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Considered are linear differential equations with periodic and almost 
periodic coefficients and with stationary lags [delays] in the argument. 
The application of the Laplace transform leads to the solution of linear 
Diophantine equations. The terms of the series of the transforms consti- 
tute semigroups for which there is established an isomorphism with the 
group of certain generalized numbers. 

This isomorphism simplifies the computations and makes it possible to 
investigate the stability of the quasi-stationary equations. In parti- 
cular, an asymptotic criterion for stability of the solutions of a second 
order linear differential equation, with almost periodic coefficients is 

obtained. 

1. We shall consider the following system of linear differential equa- 

tions [l] 

qn y + n-g 5 dA,I, (6) ““‘i”,K’ *) ) -O(t) (1.1) 
k=o --h 

/ 

Here Y is an m-dimensional vector; the Ap,, are constant m x m matrices 
satisfying the conditions 

where E is the unit matrix, and \A) d enotes the norm (1.2) of the matrix 

A. The number 1 is assumed to be finite. 
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The elements a .~~(~) of the matrix A (8) = 11 a .q”fs) 11 IB are 
assumed to be fun%ons of bounded variation [Z] onSf [ -h, 01, (h>O). 

The integrals in (1.1) are Stieltjes integrals [Z], 

We shall assume* that 

a, = 0, Rea,zO (q = 1, . . . , Z) (1.3) 

Pmong the numbers Im a there may be non-commensurate numbers. Suppose 

that the transform of a v&tor Q(t) (t >O) is the vector Q(p), which is 
regular and bounded when Re p>b = const. We are looking for a solution 
Y(t), with t > 0, of the system (1.1) that will satisfy, when t E f-h,01 , 
the initial conditions 

Y (t) = Y,(Q) (t) , . . . , rlY (t) / &- = Yp-I) (t) (1.4) 

Here it is sufficient to assume that the vectors Y,,(j) (j = O,J, . . . . 
n - 1) are absolutely integrable on t-h, 01 , The vectors Y(t), . . . , 

d”fY( t)/dt”l are assumed to be continuous from the right at the point 

t = 0. 

Denoting the Laplace [3] transform of Y(t) by F(p), we have 

F (p) = [ Y (t) e--Pf dt 

0 

Multiplying the terms of the system (1.1) by e-Pt and integrating the 
results with respect to t from 0 to t m, we obtain the following system 
of linear difference equations for the vector F(p) 

F (PI = i R, Ip) F cp + 4 + Q (PI (4.6) 
q=1 

Here we have introduced the following notation [l] 

& fp) = - Lo-” (PI L9 (P + %)r Q (PI = Lo-” (P> Jz (PI (1.7) 

The matrices Lq(p) and the vector R(p) are known [l] 

n-1 

L9 (PI = A9nPn + x P” e @‘@d&k (6) (q = 0, i, . . . , 1) 

k=o -h 
(1 l 8) 

+ The general case Re a 
P 

> 0 in (1.1) can be reduced to the case (I. 3). 
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R (p) = Q (p) + i A,, ns Ye(j) (0) (p + ~,)~--j-* + 
q=o j-o 

1 n-z n-i 0 

+xxzs dP+aq)8dAqk (6) Y,(j) (0) (p + ~q)~-j-l - 
qiio j -0 k= j+l -4’ 

We shall 
i.e. 

I n-1 0 0 

-xzsse fp+Q (-)dA *k (a) Y ,(@ (t) dt (1 .q 
q=o X=0 -h t 

point out the most important properties of L,(p), and Q(p); 

p-“L,(p) -+ A,, 52 (p) + 0 when Re p -+ -I- 00 (1.10) 

Ihe convergence is uniform in Im p. From (1.2) it follows that if 
Re p >b, where b is a sufficiently large number, then the solution F(p) 
of the equation (1.6) can be obtained by the method of successive approxi- 
mations [2, p.451. ‘Ihis yields [l] 

(1.11) 

x . . . x &&J+%+fw,+. - .+ws_J Q (P+%+w, + . - * +qJ 

‘he series (1.11) for F(p) converges when Re p >,b. Ihe original Y(t) 
obtained from the series (1.11) will be a series that converges abso- 
lutely and uniformly when 0 <t <T < m. For a system of differential 
equations with almost periodic coefficients, this series will differ but 
little from the series obtained in [3]. lhe series (1.1) and its original 
do not yield directly a way for solving the problem on the stability of 
the solution of (1.1). 

2. In this se&ion we indicate a relationship between the investiga- 
tion of the system (1.1) and the study of linear ~ophantine equations. 

Let us associate in a one-to-one way the generalized number [x, 03 
(x, u are non-negative integers) with the product of the matrices (1.7) 
of the form 

& (P)& (P + a,ll) G CD + aq, + ad . . . fh. (P + a,, + aqs + . . . -k up,1 

(2.1) 

x = (Ql - 1) + (qa - 1) 1 + (q3 - 1) I” + * * * + (!I. - $1 r--” 

x<l”-1 (2.2) 
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We let the unit matrix E correspond to the number [O,O] . We shall de- 
note this correspondence by a double-headed arrow c*; thus we have, e.g. 

K,(pM,(p + az) * [1,21. 

l’be indicated correspondence (isomorphism) is one-to-one, since every 
integer x can be expressed in a unique way in the scale of notation to 
the base 1. The sums and differences of products of matrices of the type 
(2.1) will correspond to numbers [x, 01 connected by plus and minus 
signs. 

Example 2.1. Let us find the matrix which will correspond to the sun 

14,21+ 11,21+ [14,21+ 111,21+ -. . (1 = 4) (2.3) 

Expressing the numbers 4, 1, 14, 11 in the scale of notation to the 
base [radix] 4. we obtain from (2.1) and (2.2) 

lu,@)K,@+al)+4@)4@+a~)+K~(~)~4(P+a8)+~4@)~8@+ar)+. . (2.4) 

In order to preserve the correspondence (2.1), (2.21, it is necessary 
to give a rule for multiplying the nmhers Lx, ul. ‘lhis rule is the 
following non-commtative relation 

IXl, a11 [X2, (421 = [Xl + XJ’t (Jl + %I (2.5) 

From (2.5) it follows that any number [x, ul (u > 0) that corresponds 
to (2.1), can be represented as the product 

[xc al = [!I1 - I,11 [qa - I,11 . . . [q,-hiI= [X (qk-l)lk-l, a] (2.6) 
k=l 

With every number [x, al we associate the numbers Lx, (13 (Y) of the 
form 

Ix, dY) = @(q, - 1) F-l, u - 71 
k==l 

(‘I = 1, . . . ) a-i) (2.7) 

‘Ihese numbers will he called the derived numbers for [x, u]. f3y de- 
finition we write 

rx, do’ = 1x9 al, ix, da’ = co, 01 (2.8) 
Let us consider the function a( [x, 011, defined in the following way 

for the numher [x, a] corresponding to (2.1) 

a (Ix, aI) = a, + ag, + . . . + %., a (IO, 01) z 0 (2.9) 
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From the definition of multiplication (2.5) and the expression (2.9) 

for the function a, follows the fundamental property of a([~, ul): 

a ([xl, a,1 [x2, aal) = a (ix,, alI) + a ([L %I> (2.10) 

From (2.7) and (2.10) it follows that each of the numbers a([~, ul’y)) 
(y = 0, 1, . . . . u) can differ from the neighboring one only by the 
quantity aq(q = 1, . . . . 1). 

Let us order the set of numbers 

ak,,k,,....kl = k,a, + k,a, + . . . + klal (kl, kz, . . . , k,=O, 1,2 ,...) (2.11) 

We shall say that the number ak 
1’ k2,..., 1 

k precedes the number 

ahl’, $‘,,.., kl’ if k, t k, t . . . t k, < k, ’ + k,’ t . . . t k,‘, and when 

k, + k, + . . . t k, = k,’ t k,’ t . . . t k,‘, if the first non-zero differ- 

ence k, - k,‘, k, - k,‘, . . . . k, - k,’ is positive. Among the numbers 

(2.11), there can occur numbers which are equal in numerical value. ‘lhere- 

fore we have to renumber them without repetition and without omitting 

numerical values. Let us denote them by p,(F = 0, 1, 2, . ..). PO = 0. 

Let us consider the sum sr of all the distinct numbers satisfying the 

equation 

a (ix, 01) = 0, (r =o, 1, 2. . . .) (2.12) 

Equation (2.9) shows that (2.12) is a linear Diophantine equa-tion, 

while [x, ul depends, according to (2.2), on the order of the numbers a 
9' 

The sum of matrices, corresponding to sr of the form (2.1), we shall 

denote by S,(p), S,(p) +-+ sr. Making use of these notations, we can re- 

write the series (1.11) in the form 

F (p) = 5 S, (p) Q (P + B,) = ; sr (P) Lo-l (P + p,) R (P + P,) (2.13) 

r=o r=0 

3. Let us study the matrix S,(p)L,-'(p) separately. In the following 

section it will be shown that the singularities of this matrix can de- 

termine the asymptotic behavior of the solution Y(t) of the system (1.1). 

For the most important case, when the coefficients of the equation (1.1) 

are real, one can find for every number a 

(l?e a 

q # 0, anumbera*=-a, 

= 0). This implies that into the sum Sr(p) there wi 1 enter as .9 q 

termsqproducts of matrices of the type (2.1), which have poles of arbi- 

trarily high order at the points p = pk 

notation 
0’ 

kl,.ee,kl. Here we use the 
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Pk k ,, I, -.*I kl = pk. - 
k,a, - k,G - . . . - klal 

(kq = 0, i,2. . . . ; q = 0. 1. . . . , I) (34 

The numbers pop pl, pz, . . . are the roots of the equation 

Det L, (p) = 0 (3.2) 

‘Ihis follows from (1.11) and the definition (1.7) for Kg(p). lhe de- 
numerable set po, pl, ps, . . . can be arranged in the order of decreasing 
absolute values 

Repo>Rep,>Rep,>. . . , Rep,-+-oo (3.3) 
- 

Let us now consider the equation (2.12) that defines so 

a (fx, 01) = 0 (3.4) 

If the number [xl, u,l E so (that is, if the number [xl, 0~1 enters 
into the sum so) and if [x2, a21 E so, then it follows from (2.10) that 

1x1, ql [x2, UJ E so. This means that the solutions [x, ul of equation 
(3.4) form a multiplicative semigroup [5], which we shall denote by W. 
'he semigroup W is a subsemigroup of the entire multiplicative group [s] 
of the numbers [x, a] with the law of multiplication given by (2.5). 

A number [x, ul E so will be called a simple solution of the equation 
(3.4) if a([x, u](y)) # 0 (y = 1, . . . . u - 1). The sum of all the simple 
solutions Lx, 01 of equation (3.4) we shall denote by so*. 

A number Ix, al E so will be called a compound solution of the equa- 
tion (3.4) if zero occurs among the numbers a([x, uI(y))(y = 1, 2, . . . , 
u - 1). Every compound solution of the equation (3.4) can be expressed 
in a unique manner as the product of two, three, or more simple solutions 
of equation (3.4). Ih e number [O,O] will be defined to be a compound 
number. ‘Ihe greater the number of simple solutions in the expansion of a 
number [x, al, the greater will be the number of meromorphic factors 

LO -'(PI in (2.1), and the higher will be the order of the poles of the 
expression (2.1) at the points p = pi defined by (3.2). The matrices 
(2.1) that correspond to the simple solutFons so*, contain only one 
factor L,-‘(p). 

One can say that the numbers entering into so*, and the number [O,O] 
constitute a generating set [5, p.1391 of the semigroup W. All solutions 
[x, ~1 of equation (3.4) that enter into so can be obtained in the 
following way from the generating set so*: 
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so = [O, O] + So’ + so*so* + SO*SO*SO* + . . . = 10, 01 + @O (3.5) 

For the corresponding matrix expressions we obtain 

So (p) = F + 8,’ (14 So (P), s (p) = (E - s,’ @)1-l 

Let us introduce the matrix D(p) with the aid of (1.3) 

(3.6) 

D (PI = Lo (P) - Lo (P) 8: (P) (3.7) 

We see that So(p)L,,-l(p) = E’(p). F rom the above considerations we 
obtain the following expansion of the type (1.11) for s,*(p): 

Here K,., stands for the expressions ql, qz, . . . , ql = 1, 2, . . . , 1, 
where the qj satisfy the conditions 

oq, + oq, + . . . + up0 = 0 (3.9) 

0 E {a,,, aql + aqr, aql + a,, + aqar . . ., a,, + a,, + . . . + %,_,I (3.10) 

For the case aI = - az(Z = 2) in (l.l), the theory of generalized 
numbers [x, u] has been applied in [6] for a complete analytic continu- 
ation of F(p) in (1.11) to the entire complex plane p. 

4. We shall apply the 
stability of a system of 
small parameter CI 

results of section 3 to the investigation of the 
equations simpler than that of (1.1) with a 

n-1 0 

d”Y (t) 
dr” + x \ dA,k(e, p) dky;tkf *) + 

k=o -A 

+p i e4qt (A,n(p)p +n!$ [ dA,k to, p) (4-l) 
q=1 k=o -A 

‘lhe elements of the matrix A,,(f), p) are assumed to be differentiable 
a sufficient number of times with respect to P if O<U<<~. When u = 0, 

the system of equation (4.1) degenerates into a system with constant CO- 

efficients and with a stationary lag in the argument. In this case all 

terms, except the meromorphic matrix s,(p)~,-'(p)R(~)I~=~, will disappear 



Linear differential cquationr with exponential coefficients 1543 

in the series (2.13) and (1.11). The matrix S,(p) s B when ti = 0. lhe 
vector R(p) (1.9) has for its elements the entire functions Q(p) z 0. 
When n > 0 is sufficiently small, only the matrix SO(plLO-'(p) can have 
poles with coefficients in the principal parts of the expansion. From 
(3.61, (3.7) it follows that the poles which determine the asymptotic be- 
havior of the solutions of the system (4.1), can be found by means of the 
equation 

Det D (p) = Det (L, (p) - Lo (~1 80’ W = 0 (4.2) 

'Ihe matrices which occur in (4.2) are defined in (1.8) and (3.8). 

The formula (4.2) can be solved directly in one irn~rt~t particular 
case. 

Let P,(M), p,(u), p,(ccL ..a be the roots of the equation (3.2) which 
has been constructed for the system (4.1). They are assumed to be con- 
tinuous in O\<u\<gl. 

Suppose that for one of these roots p*(n) the following condition is 
satisfied 

f.+(O) - p* (O)+pr (r=i,&..., k=.O,f.&...) (4.3) 

From (3.8) it follows that the singular points of the terms of the 
series L,(p)Sa*(p) can occur only at the points 

pk. r = Pk (cl) - fir (k=0,1,2 ,..., r=i,2,3 ,,..) (4.4) 

where p, # 0 when r # 0. If the numbers al, u2, . . . . a1 are coarnensurate, 
i.e. ’ 

. .t:.arfi 
= nq8i, Im 0 = 0, n 

9 
an integer, then /p,i >B > 0 (r = 1, 

2, ence, for sufficient y small n,>n > 0, E > 0, the matrix 
Lo(p) will be analytic in the circle Ip - p*(O)\ GE, and will have 
a norm which is arbitraril small. 'lhe series (3.8) will converge abso- 
lutely and uniformly when p - p*(O)/ GE, O<u\<clp. lhe number of 
zeros of the equation (4.2) within the circle jp -p*(O)/ <a will be 
equal to the multiplicity of the root p*(O). These roots will tend to 
p*(O) as n - 0. 

If there exist non-comnensurate numbers among the numbers ia,, ia,, 
. . . . ial, then lim I@,1 = 0 when r - + Q). In the series L,,(p)Sa*(p) the 
terms will have poles arbitrarily near to p*(O) for every CI # 0. Ihere- 
fore, the series (3.8) for ~*(~)~~*~~) will diverge in the circle 

IP - p*(O)1 <a for every ~1 > 0, a > 0. 

Nevertheless, the partial sum (3.8) for the series L,(p)S,*(p) from 
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o = 2, to CT = ue < @ is holomorphic in the circle \p - p*(O)1 < E for 
sufficiently small n > 0, E > 0, and for any ue >Z. ‘Ihis makes it 
possible to expand the roots of the equation (4.2) in formal series of 
increasing powers of ~1 (if the coefficients of the system (4.1) are 
analytic functions of IJ when 1~11 < cl,). 

For the system of equations (6.1) without lag in the argument, one 
can deduce the asymptotic nature of these expansions when t.~ + 0 on the 
basis of the work [7] . 

In the more general case of the system (4.‘1) with stationary lag in 

the argument, it is still possible to expand the roots of the equation 
(4.2) in formal power series of n (these series usually diverge when 
IA # 0). The asymptotic behavior of these expansions, when P -4 0, relative 
to the stability of the solutions has not yet been established. 

Emmplc 4.1. We shall find the characteristic exponent of the solution 
of the differential equation 

(4.5) 

where r~ # k (k = 0, 1, 2. . ..). c’ > 0, -r > 0. From (1.8) we have 

Lo (P) = d + pave-pr + ma, L,(p)=&(p)=j.k, I----2, al=-us==2i (4.6) 

Equation (4.2). (3.8) takes on the form 

d + aa + y12cpc-“* - (p +$a + (p - a (p -%y + ())a + 0 (P4) = 0 (4.7) 

Prom equation (4.7) we find the approximate value P 

ips ip% sin To 
P=i@+ 40(1_@ + 2 - (4.8) 

For sufficiently small values of lcl\ the solutions of (4.5) will be 
asmpptotically stable when 

ccosTo>o f4.9) 

and unstable when c COB TO < 0. 

Eraaple 4.2. Let us find the approximate equation of the boundary of 
the region of instability of the solutions of the differential equation 
with almost periodic coefficients with a lag in the argument 

Cp+,+ +hy(t)+2p f: b,coso&/(t--q)=O (4.10) 

9=1 
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Here, c>o, ct>o, h=o, P” 

numbers. From (1.8) we obtain 
0; C, A, oq > 0, and -rq >O are real 

&w=~+lw+~., L,,+ (~1 = Lzq W = M, *rp C-- r,p) (4.11) 

Equation (4.2) takes on the form 

Equation (4.12) has two roots p1 and p2 which become zero when p - 0, 

h - 0. The left side of equation (4.12) is real when p is real and 
Re p1 # Re pg. Hence on the boundary of the region of instability p = 0. 

We thus obtain the following equation cl] for the boundary of the 
region of instability: 

1 

L= - 2p 2 bq*oq-* cos (aqtq) + 0 (p) (4.13) 
q=1 

Example 4.3. Let us find the approximate expression for the character- 
istic exponent of the system of equations 

dY @I 
1 

---=A+@ 2 BqcosoqtY(t-rq)=O dt 
q=1 

(4.14) 

Here, A = (aI, a2, . . . , 
0 < 01 < 02 < . . . 

aJ is a diagonal matrix. Re aq # Re as (q # s), 

< 01 are real numbers. Let us assume that (x = 

--q 
= iob (q= 1, . . . . I) in (4.1). From (1.8). and (4.14) wzq&aln 

L,(P)=EP--A, L,q_1 (24 = J& (A = - V, empzq (4.15) 

Equation (4.2), (3.8) has the form 
(4.16) 

Det 
( 

L, (PI- Lo (p) i; 0Qq_-2 (~1 Ktq (P + QJ&) + Kt9 (~1 K2q_l (p - o,i)) + 0 &‘I= 0 
q=1 

From (1.71, (4.15) and (4.16) we obtain approximate expressions for 
the roots of the equations (4.16) which lie near to the aq, Im a 

q 
= 0 

p = ak + 2~s s i “j$@ (aa - a,) cos tqoq - oq sin rqoq 

*=I 4x1 @k - a,)” + oq2 
+ 0 W) (4.17) 
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Here the 8::) are the elements of the matrix Bq, Bq = 11 bii) 11;. 

5. Let us consider the case of (1.1) when a,, G 0, a = n 8i (q = 1, 
.*., I), where the n 
a linear differentia 9 

are integers, i.e. we shall conszder zhe case of 
equation with periodic coefficients and stationary 

lag in the argument. The method of [41 is applicable to these equations. 
We shall give the most important results which follow from [4]. 

Theorem 5.1. L-et a0 z 0, aq = npf3i (q = 1, 2, . . . , I) where the nq are 
integers. In this case the representation (1.5) of F(p), the transform of 
the solution Y(t) of the system (1. l), can be continued analytically over 
the entire complex plane p. ‘Ihe components of the vector F(p) are mero- 
morphic functions of p which are regular and bounded if the Fk p is 

sufficiently large. ‘Ihe poles of F(p) are at points pjk of the form 

pjk = pj + kOi o’=i,2,3 ,..., k=O, d,jz2 ,...) 

tRe Pj +--whenj++m) 

(5.1) 

Theoren 5.2. Ihe general solution of the homogeneous (0(t) z 0) system 
of equations (1.1) with periodic coefficients and with stationary lag in 
the argument (an z 0, a, = nji, nn integers) can be represented under 
the condition (I.2), as‘the &ympt&ic series (t - + m) 

Y (t) = 5 ePjt [Bj, (t) + tBj, (t) + , . . + t”jBjaj (t)I 
j=l 

(Repl>Repo> Refi), . . ., Rep A-wwhenj++oo) 

‘Ihe vectors Bjc(t) are regular in some strip along the real 
and are periodic of period 2~0~‘. If Re p+ > Re p,, then 

(5.2) 

axis t, 

ePj ’ [Bjo (t) + tBjt (t) + . . . + t8jBjaj (t)]} eAp*’ + 0 (5.3) 
i+ce 

A special case of Theorem 5.2 was proved in [6] . 

Note 5.1. The series (3.8) in (4.2) can be continued analytically over 
the entire complex plane p using [a, p. 595. Lemma 7.11. 

Note 5.2. If in the system (4.1) the coefficients are regular func- 

tions of p when 1~1 <.v, the roots of the equation (4.2) can be expanded 

in series of increasing powers (in general fractional) of ct. These series 

will converge when 0 < 1~1 < E. E > 0, but they can contain negative 

powers of p. Suppose that when p = 0 the system of differential equations 

(4.1) does not contain terms with a lag in the argument, and has the 
characteristic exponents pjo( j = 1, 2, . . . , m x n). For sufficiently small 
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values /cl1 < a, E > 0, the characteristic exponents pi(p) which have the 
largest real part are arbitrarily near to Pi’. The functions Pi(~) will 
be bounded when 1~1 d E. If the pi0 satisfy the condition 

Pj” -P,,‘#ke (h=i,..., mxn,h+j, k=O, fi, f2 ,...) (5.4) 

then dPj(U)/dcI = 0 when p = 0. 

6. In this section we extend the method of [41 to equations with 
almost periodic coefficients and with a lag in the argument. 

Let ro, rl, . . . , r,.,, k,, k,, . . ., k< be non-negative integers. We in- 
troduce the matrix-functions S(p) by means of a matrix series [4,p.5901 
of the form 

X 4, b + Pk,, + %, + a,,) . . . %a (P + Pk, + a,, + . . . + %o--l) (6.1) 

The letter Kg denotes various sets of indices Qj = 1,. . . . , 2 (j = 1, 
. ..) u) satisfying the auxiliary conditions 

Here, k,, k,, . . ., ke, ro, rl, . . ., 

numbers i3, introduced in Section 2. 
r,, denote the ordinals of the 

‘Ihe symbols { 1 denote a set; f-I is 
the symbol indicating the intersection of sets; C is the inclusion sign 
for sets; A is the null set of indices; the Kq(p) are the matrices from 
(1.7). 

Making use of the notation (6.1), the series (1.11) can be written in 
the form 

F (P) = S-J (PI + 5 3: (P) S-J (P + BJ (6.3) 
t=o 

From (6.2) it follows that the larger the lower indices, the “better” 
will be the convergence of the series (6.11, in the sense that terms 
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that do not satisfy the auxiliary condition (b) of (6.2) will drop out 
of the series (6.1). 

As was done in [4], one can prove relations which generalize the 

Lema (7.1 of [4, p. 5951 f or functions S(p) of the definition (6.1). 
These relations make it possible to express the matrix-function S(p) by 

means of a matrix-function with an additional lower index y. 

We now give the final formulas for the three possible cases’ 

(A) Suppose y = k,, # k,, k,, . . . , k,; then 

s& k,. . . . . k, (p) = cE - Sk. k,, . . . . ka.u (p))-’ ‘%io, k,. . . . . k,,y (p) (6.4) 

(B) Suppose y = r # k,, k,, . . . , k,, then 

‘fi. k, r.... k, b) = ‘%. k ,r.,., k,.u b) (e - ‘-% kl ,...I k,.u (P!)-’ (6.5) 

(0 Suppose y # r, k,, k,, . . . , k,, then 

$, k, ,_.,I k, (p) = $,‘I. k,. . ..v k,,r (P> + 

+ sio, k, ,,,,, k,,y (p) (E .- s;, k ,,...I k,,u (P))-“-%. kt...,, ka.y (p) 
w-5) 

If the numbers a are commensurate (Section 5), then these relations 

make it possible to’analytically continue the series (l.ll), (6.3) over 

the entire complex plane p. ‘Ihis leads to Theorem 5.1. 

The equation (4.2) for the determination of the singularities of 

representation F(p) takes on the form 

the 

Det D (P> = Det (LO (P) - -% (P) SO.: (P)) = 0 (6.7; 

in the notation of (6.1). 

Let us consider the problem on the stability of the solutions of 

system (4.1) in the case when the condition (4.3) is not satisfied. 

is, let, e.g. 

the 

nat 

pl (0) - f%(o) = BY (7 + o), Pk (0) - p o (0) # fir (k = 2, 3, ., I’ = 1, 2, . . -1 (6.8) 

In this case it is convenient to use, in the solution of (6.7), a 

formula which follows from (6.6) 

L, (p) $0 (p) = LJ (P) $0. Y (P) + Lo (P) s,‘, 0. Y (P) (6.9) 

K, (p + BY) - LJ (P + BY) s:* 0. Y (p)I-’ Lo (P + BY) R 0. Y (P) 
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Any finite partial sums of the series on the right-hand side of (6.9) 
are regular in p and i_r within the region p - I 
E > 0 is small enough. ‘Ihe matrices L,-‘(p + 

), 

i. e. those which have a singularit 
Y’ 

at the point p = p,(O), do not occur 

among the matrices of the form L, -7 (p + p,) which enter into the series 

of the right-hand side of (6.9). 

Exanpie 6.1. Let us find the boundary of the region of instability of 
the solutions of the differential equation 

@Y w r + hy (t) + 2pa cos 2ty (t - a) + 2Pb cos 4ty (t - ts) = 0 (6.10) 

when h = 1, or = 0; A, (i > 0, TI > 0, -r2 > 0 are real parapteters. 

From (1.1) we have I = 4, a0 p 0, aI = - axz = 2i, a3 = - a4 = 4 i. 
From (1.8) we obtain 

r, (P) = PB + k Ll fp) = La (p) = pw-pgt L8 (p) = & (p) = pbemp+* 

Let us compute the numbers pr, PO t 0 

ix1 = PI = 2i, Ua = /3* = - 2i, aa = j3~ = 4i, % = PI = - 4i, 2al= PI 

al+aa=f%, ul+ag=&=lji, al + &r = Pa, 2ua=&,... etc. 

From (0.8) we find PI(O) = 4(-h) = i, p2t0f ?J -i, pa - p1 = - 2i = pp. 
We construct linear combinations of the form (2.11) which yield PO and 
Pt. We obtain 

ul+u~=a~+al=us+4=~+~=. . . =f$ 

u~=q+ar=ar+al=...=6~ 

(6.12) 

The combination a2 + aI does not satisfy the condition (b) of (6.2) 
for the function $,Q,y(p). 

The equation (6.7), in combination with (6.91, takes on the form 

~L,(f)-LL,(p)lK1(p)K2(p+2i)+K8(P)K4(P+4i)+K~:I~)i(s(p-4i)+. .:I) x 
x {Lo (p - 2i) -Lo (p - 2i) [KS (p - 2i)Kr (p - 4i+ + KS (p - 2i) Kd (p + 2i) + 

+K,(p-2i)Ks(p-6i)+...]}= (6.13) 

=(L,(p)[fYa(p)+Kx(p)K4Kctp+2i)+K4(p)X1fp--if+...11~ 

X~~(p-2i)lK1(p-2i)+K~~p-22i)+K~(p-Zi)+K~(p-22i)K~(p-4i)+... 1) 

In (6.13) 811 series are written out with an accuracy within infinite- 
simals of the order O(I.L~), inclusive. Making use of the scalar nature of 
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the functions L,+p) (6.11). we could eliminate the denominator in (6.7) 
and (6.9) and obtain the equation (6.13). After substitution of the ex- 
pressions (1.7) (6.11) into (6.13). we obtain an explicit equation for 
the characteristic exponents p. Proa the condition of the negativeness 
of the real parts of the roots of the equation (6.13) near to i, we 
obtain 

cos 421+ T cosa 2%~ a> 
1 ( 

paab 
pa + 4 cos 2 (x2 - 71) c0s(?8+2t1))*+0(P') 

(6.14) 

The condition (6.14) is only necessary, but it is not sufficient for 
the stability of the solutions of (6.10). 

7. We shall try to find an asymptotic (with u - 0) criterion of sta- 

biiity of the solutions of a linear differential equation with almost 

periodic coefficients [7] 

(7.1) 

Here, A, LI >O are real parameters; the fk(t) are real functions 

(7.2) 
1 

fk (1) = c a,# (p) e-“+ 6 = 0,1,2). aoso, a9 = e,i (eq # f$(q # W 
9=0 

where aqc(u) are sufficiently often differentiable functions of cl, and 

the Oq(q=l,..., 1) are arbitrary real numbers. From (1.8) we obtain 

(7.3) 

&I (p) = (1 + P&a) pa + WOlP + h + WOOL 4 w = p @0zP2 + %lP + %o> 

Just as was done in [4, p. 5981, we form the equation (6.7) for the 

determination of the characteristic exponents. ‘lhe conditions of the 

negativeness of the real parts, and the application of the results of 

[71 lead to the next theorem. 

77zeorem 7. I. l,et the “resonance” case be given when -2i J h = p,, # 0. 

In order that the solutions of (7.1) be asymptotically stable for suffi- 
ciently small values of ~(0 < u <Ed), it is sufficient that the next 

two conditions be fulfilled when O<:p<eEl: 

gr (P, A) = I cr (i fi) I”-- Id, (ivq I* > 0 (7.5) 



Linear differential equations vith exponential coefficients 1551 

The Solutions of (7.1) will be unstable if h(p) < 0 or g,,(v, h) < 0. 

If hW = 0, or gtcl, A) = 0, we have the doubtful case. -I 

Hero we have used the notations of (6.1) 

c, ($4 = J% (F) 

Note 7.1. If -2iJ A # p, ty = 1, 2. _, _ ) in (7.1). then the solutions 
of (7.1) are stable when hic1) > 0, and they are unstable when h(p) < 0. 
The stability is considered in the asymptotic sense when I.I * 0. 

Note 7.2. The series in (7.5) diverge when p > 0. The inequality (7.5) 
is taken in the asymptotic sense when I.I - 0. &I 7 0. It is considered to 
be satisfied if the first non-zero coefficient of the expansion sy(lJ. A) 
in powers of l.4 is positive. 

Note 7.3. The condition (7.5) can be found from the condition of the 
existence of an almost periodic solution of the equation (7.1). 

Example 7.1. Let us consider the stability of the solutions of the 
equation 

g + $Q$ + (A+211 COSW$ + 2p COSW) y = 0 (L>>“o) (7.7) 

where, 6.1~. og are rationally non-commensurate real numbers. From (1.1) me 
have the case when al = - ai = iol, a3 = - a, = iog. The resonance value6 

hu 
= - 0.25 &” form by (2.11) a denumerable and everywhere dense (when 

A > 0) set of numbers of the form 

kLy = - 0.25pY9 = 0.25 (kImI + kaw$ (kl, ka = 0, f 1, * 2, . . o ) (7.5) 

When c > 0, one can attach to the axis p = 0 only a finite number of 
regionS of instability. The order of the width of the regions of insta- 
bility (7.7) which touch hy, is equal to O(ptk*I+Ik*‘). 

From (2.11) we obtain 

p. E 0, p1 = iwl, pa = - io1, pa = ion, 84 = - ioh, PS = 2iol, Pe = i (@I + %I, - d. 

Let 

‘Ihe nontrivial condition of stability (7.5) takes on the form 
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( h - to12 - 2; 
I + (Q “2,,* )’ - -$ + 0 WY > 0 (7.10) 

( --&ii +wo>o 
(7.11) 

If one considers the equation 

3 + (h + Pf (0) Y = 0 

where f(t) is a real function of the form 

(7.12) 

f (t) = 2 (a, C0s0~t + b, sinc0$) 
9=1 

(7.13) 

then, on the basis of theorem 7.1, one can prove that to every resonance 
value h y,P=O 

h, = - 0.25 py” = 0.25 (qk, +02k, + , . . + qk# (7.14) 

(kq = %33, f2, ’ . .) 

one can attach (for II > O> a region of asymptotic instability of the 
solutions. ‘Ihe width of the region of instability will hereby be of the 

order O(uR@y). 

‘Ihe symbol Rg& here is given by 

RgP~=min(~k~[+lk,I+...+I~~I) (7.15) 

under the condition that 

i (@hkl +024 + * . * + w&,) = py 

Ihe problem of sufficient conditions for the stability of the solu- 
tions of the equation (7.12) has not, been solved as yet for the general 
case, to the knowledge of the author. The method proposed in this section 
for the investigation of the stability of the solutions of (7.1) does 
not contain any new principles if it is compared to [73 , but it, is more 
convenient to use in concrete computations. 

Example 7.2. The solutions of the differential equation 
d”Jl 
p. + 2p cos Cl@ -g + (h + 2p cos CO‘& y = 0 (7.16) 
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where p > 0, and 01. 02 are rationally non-commensurate and are not stable 

when A = 0.25 o12 if 
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